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Abstract 

Background: Humans are exposed to thousands of man-made chemicals in the environment. 

Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine 

disruptors. Most of these chemicals have never been tested for their ability to interact with the 

estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly 

in vivo tests, for instance, within the EPA Endocrine Disruptor Screening Program (EDSP).  

Objectives: Here, we describe a large-scale modeling project called CERAPP (Collaborative 

Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive 

computational models trained on high-throughput screening data to evaluate thousands of 

chemicals for ER-related activity and prioritize them for further testing.  

Methods: CERAPP combined multiple models developed in collaboration among 17 groups in 

the United States and Europe to predict ER activity of a common set of 32,464 chemical 

structures. Quantitative structure-activity relationship models and docking approaches were 

employed, mostly using a common training set of 1677 chemical structures provided by US 

EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and 

antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from 

the literature. To overcome the limitations of single models, a consensus was built by weighting 

models on scores based on their evaluated accuracies.  

Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. 

Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high 

priority actives and 6,742 potential actives (20.8%) to be considered for further testing. 

Conclusion: This project demonstrated the possibility to screen large libraries of chemicals 

using a consensus of different in silico approaches. This concept will be applied in future 

projects related to other endpoints.  
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Introduction 

There are tens of thousands of natural and synthetic chemical substances to which 

humans and wildlife are exposed (Dionisio et al. 2015; Egeghy et al. 2012; Judson et al. 2009). A 

subset of these compounds may disrupt normal functioning of the endocrine system and cause 

health hazards to both humans and ecological species (Birnbaum and Fenton 2003; Diamanti-

Kandarakis et al. 2009; Mahoney and Padmanabhan 2010; UNEP and WHO 2013). Endocrine-

disrupting chemicals (EDCs) can mimic or interfere with natural hormones and alter their 

mechanisms of action at the receptor level, as well as interfere with the synthesis, transport, and 

metabolism of endogenous hormones (Diamanti-Kandarakis et al. 2009). Exposure to EDCs can 

lead to adverse health effects involving developmental, neurological, reproductive, metabolic, 

cardiovascular, and immune systems in humans and wildlife (Colborn et al. 1993; Davis et al. 

1993; Diamanti-Kandarakis et al. 2009). 

The estrogen receptor (ER) is one of the most extensively studied targets related to the 

effects of EDCs (Mueller and Korach 2001; Shanle and Xu 2011). This concern about estrogen-

like activity of man-made chemicals is because of their potential for negatively affecting 

reproductive function (Hileman 1994; Kavlock et al. 1996). The emergence of concerns about 

EDCs has resulted in regulations requiring assessment of chemicals for estrogenic activity (Adler 

et al. 2011; US EPA 1996; US FDA 1996). There are numerous in vitro and in vivo protocols to 

identify potential endocrine pathway-mediated effects of chemicals, including interactions with 

hormone receptors (Jacobs et al. 2008; Rotroff et al. 2013; Shanle and Xu 2011; Sung et al. 

2012). However, experimental testing of chemicals is expensive and time-consuming and 

currently impractical for application to the vast number of synthetic chemicals in use. 
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Consequently, toxicological data and especially estrogenic activity data are available only for a 

limited number of compounds (Cohen Hubal et al. 2010; Egeghy et al. 2012; Judson et al. 2009). 

The use of in silico approaches, such as quantitative structure-activity relationships 

(QSARs), is an alternative to bridge the lack of knowledge about chemicals when little or no 

experimental data are available. These structure-based methods are particularly appealing for 

their ability to predict toxicologically relevant endpoints quickly and at low cost (Muster et al. 

2008; Vedani and Smiesko 2009). QSARs have been promoted and their use recognized since 

the pioneering work of Hansch in the 1960s (Fujita et al. 1964; Hansch et al. 1962; Hansch and 

Deutsch 1966). The conceptual basis of QSARs is that chemicals with similar structures are 

hypothesized to exhibit similar behavior in living organisms. Thus, it is possible to predict 

biological activity of new chemicals based on published experimental data. Several guidance 

documents to develop these modeling techniques are available in the literature (Dearden et al. 

2009; Worth et al. 2005). 

Recently, in vitro high-throughput screening (HTS) assays have emerged and become a 

viable tool for large-scale chemical testing (Judson et al. 2011; Kavlock and Dix 2010; Wetmore 

et al. 2012). HTS generates substantial amounts of data that can be used as a knowledge base to 

correlate chemical structures to their biological activities. Thus, QSARs can identify key 

structural characteristics in active chemicals and can use them to virtually screen large chemical 

libraries. Although there is concern about the overall accuracy of a QSAR model to predict the 

“true” activity of a particular chemical, accuracy can be high enough to use the results for 

prioritizing chemicals that are worth subjecting to experimental testing. 
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With the increasing number of new substances submitted to the U.S. EPA and the 

European chemicals agency for registration (~1500 chemicals every year), there is a need to 

prioritize chemicals to speed up the process and lower the overall costs of testing (US EPA 

2015). The U.S. Tox21 and EPA’s ToxCast projects are screening thousands of chemicals in 

HTS in vitro assays for a broad range of targets (Dix et al. 2007; Judson et al. 2010; Martin et al. 

2010). Relevant to this paper, these two projects have in common ~1800 chemicals tested in a 

battery of 18 ER-related assays (Huang et al. 2014; Judson et al. 2015). 

This paper describes the results of CERAPP, a collaborative effort organized by the 

National Center for Computational Toxicology at the U.S. EPA. The aim of the project was to 

use ToxCast/Tox21 ER HTS assay data to develop and optimize predictive computational 

models, and to use their predictions to prioritize a large chemical universe of 32,464 unique 

chemical structures for further testing. Seventeen research groups from the United States and 

Europe participated in this project. These groups submitted 40 categorical models and 8 

continuous models using different QSAR and structure-based approaches. Most of the newly 

developed models used a training set consisting of 1,677 chemicals, each assigned a potency 

score quantifying their ER agonist, antagonist, and binding activities, obtained from a 

computational network model that integrates data from 18 diverse ER HTS assays (Judson et al. 

2015). All models were evaluated and weighted based on their prediction accuracy scores 

(including sensitivity and specificity) using ToxCast/Tox21 HTS data, as well as an evaluation 

data set collected from different literature sources. To overcome the limitations of single models, 

all predictions were combined into a consensus model that classified the chemicals into 

active/inactive binders, agonists, and antagonists and provided estimates of their potency level 

relative to known reference chemicals. 
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Materials and methods 

Participants and project planning 

The 17 international research groups that participated in this project are listed in 

alphabetic order in Table S1. The goals of the project, outlined in Table S2, were achieved in 

multiple steps, including chemical structure curation, experimental data preparation from the 

literature, modeling and prediction, model evaluation, consensus strategy development, and 

consensus modeling. Each step was assigned to a subgroup of participants according to their 

interests and areas of expertise. 

Data sets 

Provided training set. The data that were suggested to be used by the participants as a training 

set to develop and optimize their models was derived from ToxCast and Tox21 programs (Dix et 

al. 2007; Huang et al. 2014; Judson et al. 2010). Concentration-response data from a collection 

of 18 in vitro HTS assays exploring multiple sites in the mammalian ER pathway were generated 

for 1812 chemicals (Judson et al. 2015; US EPA-NCCT 2014b). This chemical library included 

45 reference ER agonists and antagonists (including negatives), as well as a wide array of 

commercial chemicals with known estrogen-like activity (Judson et al. 2015). A mathematical 

model was developed to integrate the in vitro data and calculate an area under the curve (AUC) 

score, ranging from 0 to 1, which is roughly proportional to the consensus AC50 value across the 

active assays (Judson et al. 2015). A given chemical was considered active if its agonist or 

antagonist score was higher than 0.01. In order to reduce the number of potential false positives 

this threshold can increased to 0.1. 
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Prediction set. More than 50,000 chemicals (at the level of Chemical Abstracts Service Registry 

Number [CASRN]) where identified for use in this project as a virtual screening library to be 

prioritized for further testing and regulatory purposes. This set was intended to include a large 

fraction of all man-made chemicals to which humans may be exposed. These chemicals were 

collected from different sources with significant overlap and cover a variety of use classes, 

including consumer products, food additives, and human and veterinary drugs.  The sources 

include: 

(1) Chemicals with documented use and, therefore, with exposure potential (~43,000). Available 

in the EPA chemical product categories database (CPCat), which is part of the ACToR 

system (Dionisio et al. 2015; Judson et al. 2008, 2012; US EPA 2014a). 

(2) The DSSTox collection of structures (US EPA-NCCT 2014a). A list of ~15,000 curated 

chemical structures from multiple inventories of environmental interest. In particular, 

structures for all of the ToxCast and Tox21 chemicals are included. 

(3) The Canadian Domestic Substances list (DSL) (Environment Canada 2012). A compiled a 

list of all substances thought to be in commerce in Canada (~24,000 chemicals). Thus, it 

includes chemicals with potential human or ecological exposure. 

(4) The Endocrine Disruption Screening Program (EDSP) universe of ~10,000 chemicals. EPA’s 

EDSP is required to test certain chemicals for their potential for endocrine disruption (US 

EPA-NCCT 2014c). 

(5) A list of ~15,000 chemicals used as training and test sets for the different models 

implemented in EPISuite to predict physico-chemical properties (US EPA 2014b). 

This virtual chemical library, having undergone stringent chemical structure processing and 

normalization for use in QSAR modeling study (see chemical curation section here below) and 
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made available for download on the EPA Toxcicity ForeCaster (ToxCast) Data website under 

CERAPP data (See PredictionSet.zip)(US EPA-NCCT 2016), is intended to be employed for a 

large number of other QSAR modeling projects, not just those focused on endocrine-related 

targets.  

Experimental evaluation set. A large volume of estrogen-related experimental data has 

accumulated in the literature over the last two decades. The information on the estrogenic 

activity of chemicals was mined and curated to serve as a validation set for predictions of the 

different models. For this purpose, in vitro experimental data were collected from different 

overlapping sources, including EPA’s HTS assays, online databases, and other data sets used by 

participants to train models, namely: 

• HTS data from Tox21 project consisting of ~8000 chemicals evaluated in four assays (Attene-

Ramos et al. 2013; Collins et al. 2008; Huang et al. 2014; Shukla et al. 2010; Tice et al. 2013), 

extending beyond the 1,677 used in the training set ;  

• The U.S. Food and Drug Administration’s Estrogenic Activity Database (EADB), which 

consists of literature derived ER data for ~8000 chemicals (Shen et al. 2013); 

• Estrogenic data for ~2000 chemicals from METI database (METI Ministry of Economy Trade 

and Industry, Japan 2002); and 

• Estrogenic data for ~2000 chemicals from ChEMBL database (Gaulton et al. 2012). 

The full data set consisted of more than 60,000 entries, including binding, agonist, and 

antagonist information for ~15,000 unique chemical structures. For the purpose of this project, 

this data set was cleaned and made more consistent by removing in vivo data, cytotoxicity 

information, and all ambiguous entries (missing values, undefined/non-standard endpoints, and 
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unclear units). Only 7,547 chemical structures from the experimental evaluation set that 

overlapped with the CERAPP prediction set, for a total of 44,641 entries, were kept and made 

available for download on the EPA ToxCast Data website (See EvaluationSet.zip) (US EPA-

NCCT 2016). The non-CERAPP chemicals were excluded from the evaluation set (see below). 

Then, all data entries were categorized into three assay classes: (1) binding, (2) reporter gene / 

transactivation, or (3) cell proliferation. The training set endpoint to modelis the ER model AUC 

which parallels the corresponding individual assay AC50 values, and therefore all units for 

activities in the experimental data set were converted to µM to have approximately equivalent 

concentration-response values for the evaluation set. Chemicals with cell proliferation assays 

were considered as actives if they exceeded an arbitrary threshold of 125% proliferation. For 

entries where testing concentrations were reported in the assay name field, those values were 

converted to µM and considered as the AC50 value if the compound was reported as active. All 

inactive compounds were arbitrarily assigned an AC50 value of 1 M. 

Chemical structure curation 

Chemical structures collected from different public sources contained many duplicates, 

and inconsistency in the molecular structures. Hence, a structure curation process was carried out 

to derive a unique set of QSAR-ready structures. All participating groups then used this 

consistent set of structures for both training and prediction steps. It should be noted that each 

group likely employed different descriptor calculation software, which could effectively alter 

structures in some cases. Several different curation approaches were combined into a unique 

procedure used for this project (Fourches et al. 2010; Wedebye et al. 2013). The free and open-

source data-mining environment KNIME was selected to design a curation workflow to process 
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all structures and provide consistent training and prediction sets (Berthold et al. 2007). The 

workflow performed a series of curation steps, as follows:  

(1) The original files containing structures in different formats were parsed, checked for 

valences, and for the integrity of the required structural information to render the molecules. 

Invalid entries were corrected by retrieving a new structure from online databases using Web 

services (Pubchem (NIH 2015), ChemSpider (Royal Society of Chemistry 2015)) or removed 

if ambiguous. 

(2) The first filter was applied to check for the presence of carbon atoms and remove inorganic 

compounds. 

(3) The structures were desalted, and inorganic counter-ions were removed. 

(4) The second filter, based on molecular weight, was applied and chemicals exceeding a 

threshold of 1000 g/mol were removed to speed up molecular descriptor calculations and 

model calibration. 

(5) Valid QSAR modeling practice, requires all chemicals to be structurally consistent by 

converting tautomers to unique representations. Thus, a series of transformations was applied 

on the structures to standardize nitro and azide mesomers, keto-enol tautomers, enamine-

imine tautomers, ynol-ketene, and other conversions (ChemAxon 2014; Reusch 2013; 

Sitzmann et al. 2010). 

(6) These transformations were followed by neutralizing the charged structures, when possible, 

and removing the stereochemistry information. 

(7) Explicit hydrogen atoms were added, and structures were aromatized according to Hückel’s 

rules implemented in KNIME (Berthold et al. 2007). 
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(8) The duplicates were removed using InChI (IUPAC International Chemical Identifier) codes, 

because these are unequivocal identifiers. 

(9) The final filter was applied to remove chemicals containing metals which often cause 

problems in molecular descriptor calculations. 

Both training and prediction sets were processed by the same structure curation workflow. At 

the end of this procedure, 32,464 unique structures (hereafter referred to as the 32K set) 

remained in the prediction set and 1,677 in the training set. These two data sets are made 

available for download in SDF format on the EPA ToxCast Data website (See TrainingSet,zip 

and PredictionSet.zip) (US EPA-NCCT 2016). The identity of these chemicals (name, CASRN) 

was not provided to the participating modeling groups during the modeling process. 

Modeling approaches 

The participant groups adopted different approaches and used several software programs 

(proprietary or open-source [commercial or free]) to calibrate categorical and continuous models 

to the training data (Table 1). A categorical model is one that provides an active/inactive call for 

each chemical, whereas a continuous model provides a prediction of the potency (in µM) for 

each active chemical. Models were developed using both well-known and innovative methods 

including partial least-squares (PLS) (Ståhle and Wold 1987; Wold et al. 2001), partial least-

squares discriminant analysis (PLS-DA) (Frank and Friedman 1993; Nouwen et al. 1997), 

decision forest (DF) (Hong et al. 2005, 2004; Tong et al. 2003; Xie et al. 2005), three-

dimensional quantitative spectral data-activity relationship (3D-QSDAR) (Beger et al. 2001; 

Beger and Wilkes 2001; Slavov et al. 2013), support vector machines (SVM) (Cristianini and 

Shawe-Taylor 2000), k nearest neighbors (kNN) (Cover and Hart 1967; Kowalski and Bender 
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1972), associative artificial neural networks (ASNN) (Tetko 2002a, 2002b), PASS algorithm 

derived from Naïve Bayes classifier (Poroikov et al. 2000), self-consistent regression with radial 

basis function interpolation (RBF-SCR) (Zakharov et al. 2014), OCHEM machine learning 

methods (Tetko et al. 2014),  docking and consensus of different approaches (Horvath et al. 

2014; Ng et al. 2014; Sushko et al. 2011). The set of 1677 chemicals provided by EPA was used 

by more than 90% of the  participating groups as a training set to fit their models (Judson et al. 

2015), but some preexisting models were also used, that had been trained using other data sets 

from the literature such as METI (METI Ministry of Economy Trade and Industry, Japan 2002). 

In addition, each group performed its own analysis to select the appropriate chemicals to be 

considered as a training set according to their particular modeling procedure. For descriptor 

calculation and docking procedures, some of the programs used were LeadScope (Roberts et al. 

2000), PADEL (Yap 2011), Qikprop (Schrödinger, LLC 2011), multilevel and quantitative 

neighborhoods of atoms (MNA, QNA) used by GUSAR and PASS (Filimonov et al. 2009; 

Poroikov et al. 2000), DRAGON (Talete srl 2012), Mold2 (Hong et al. 2008, 2012), GLIDE 

(Schrödinger) (Schrödinger, LLC 2011), AutoDock (Goodsell et al. 1996), ISIDA (Varnek et al. 

2008) and other fingerprint generators. Some of the participants applied feature selection 

techniques, such as genetic algorithms (GAs) (Davi 1991) and random forest (RF) (Breiman 

2001). These techniques were applied after calculating descriptors to reduce collinearity and 

variable dimensionality to keep only the most informative descriptors in the models. 

Evaluation procedure for the categorical and continuous models 

All molecular structures of chemicals collected for the evaluation set from the different sources 

were curated and standardized using the previously described KNIME workflow (See step 2 in 
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Table S2). All data used as the evaluation set for categorical and continuous models are available 

on the EPA ToxCast website (See EvaluationSet.zip) (US EPA-NCCT 2016). 

Standard InChI codes were generated in KNIME and used to identify the chemicals. 

Data-mining tools available in the KNIME environment were used to concatenate and unify the 

different information fields from the different sources (CASRN, chemical name, original 

structure, standardized structure, InChI code, assay name, assay class, protein subtype, species, 

endpoint name, endpoint value, endpoint unit, and literature reference). Even though ToxCast 

chemicals were used in the training sets of many models, they were not removed from the 

evaluation set to investigate how the predictions will perform on the literature data knowing that 

there are differences between the AUC values and the literature data. Also because the sources 

from which the evaluation set was collected are not fully verified (we cannot assume that all 

cytotoxicity information was already fully cleaned)., 

Evaluation set for categorical models. An important issue with the literature-derived evaluation 

set (discussed further below) was the inconsistency of the results from different sources. To 

minimize this, the available entries for each chemical structure were grouped into binders, 

agonists, and antagonists. The results were then categorized into active and inactive classes using 

all available literature sources by applying three rules. 

(1) If, for a specific chemical within one of the three classes (binding, agonist and antagonist 

each apart), the disagreement among the different sources exceeds 20% (e.g. 2 sources 

indicating active agonist and 3 indicating inactive agonist), that chemical was removed from 

the evaluation data set of that specific class. 

(2) If a chemical was an active agonist or antagonist, it also was considered as an active binder if 

the information was not available. 
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(3) If a chemical was an inactive agonist and inactive antagonist, it was considered also as non-

binder if the information was not available. 

This procedure resulted in a total of 7,522 unique chemical structures with activity data to be 

used for evaluation of the categorical models (See Table 2 and available for download on the 

EPA ToxCast website, EvaluationSet.zip) (US EPA-NCCT 2016). 

Evaluation set for continuous models. For active chemicals with available quantitative 

information from concentration-response assays, the log10-median of the literature values was 

calculated. Only entries with equivalent endpoints were considered (e.g. PC50 and EC50). This 

resulted in 7,253 unique chemicals with quantitative information (See Table 3 and available for 

download on the EPA ToxCast website, see EvaluationSet.zip) (US EPA-NCCT 2016).. To 

reduce the variability that increased with the disparate literature sources, the chemicals with 

quantitative information were categorized into five potency activity classes: inactive, very weak, 

weak, moderate, and strong. These five classes were used to evaluate the quantitative 

predictions. A list of 36 known active and inactive reference chemicals was used for calibrating 

the mapping from quantitative potency values to the activity potency classes (Judson et al. 2015). 

These same chemicals were used to validate the mathematical model used to generate the AUC 

values for the training set. The following thresholds were applied to the concentration-response 

values. 

(1) Strong: Activity concentration below 0.09 µM 

(2) Moderate: Activity concentration between 0.09 and 0.18 µM 

(3) Weak: Activity concentration between 0.18 and 20 µM 

(4) Very Weak: Activity concentration between 20 and 800 µM 

(5) Inactive: Activity concentration higher than 800 µM 
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The five classes were assigned scores from 0 (inactive) to 1 (strong) with 0.25 increments. Then, 

for each chemical, the arithmetic mean of the scores of the merged entries from different 

literature sources was calculated. A new class was assigned to the merged entries according to 

the following thresholds. 

(1) Strong: Average score > 0.75 

(2) Moderate: 0.5 < Average score between <= 0.75 

(3) Weak: 0.25 < Average score <= 0.5 

(4) Very weak: 0 < Average score <= 0.25 

(5) Inactive: Average score = 0 

The number of entries in each class for binding, agonist, and antagonist are summarized in Table 

3.  

Evaluation procedure. This section is focusing on the categorical models for their high number 

compared to the continuous models. The procedure used to evaluate the predictions of the 

participant groups was based on the categorical and continuous experimental data from ToxCast 

and the evaluation set from the literature. All continuous and categorical models for binding, 

agonist, and antagonist were evaluated separately on the overlap between their predicted 

chemicals and the following sets of chemicals (See Table S3). 

(1) Chemicals in EPA’s ToxCast dataset (n= 1,529 chemicals after excluding those in the 

ambiguous AUC range of 0.01 to 0.1). 

(2) All chemicals in the full literature data (all literature sources combined). 

(3) All chemicals with at least two literature sources 

(4) All chemicals from the  literature data excluding the very weak actives 

(5) Chemicals within the applicability domain (AD) of each model (if provided) 
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(6) Chemicals remaining after applying the previous 3 filters in steps 3, 4 and 5 to reduce 

ambiguous predictions (single literature source, very weak actives, and predictions outside 

the AD) 

To evaluate the models on different criteria, we first determined the sensitivity (fraction of 

accurately predicted actives out of all actives), specificity (fraction of accurately predicted 

inactives out of all inactives), and balanced accuracy (average of sensitivity and specificity) for 

each subgroup of chemicals according to each model. We then used BA values to derive two 

summary scores for each model, as described below. 

Score_1. Evaluation includes BA of each of the six steps weighted by the fraction of predicted 

chemicals of the same step as well as the fraction of the predicted chemicals out of the full 

prediction set. This score favors models with a wider AD and those predicting a maximum 

number of chemicals. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒_1 = 1
3

𝐵𝐵𝐵𝐵!"#$%&' ∗ 𝑁𝑁_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝!"#$%&'
𝑁𝑁!"#$%&'

+
𝑁𝑁_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 1 𝑁𝑁!"#$%&'
𝐵𝐵𝐵𝐵! ∗ 𝑁𝑁_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝!
𝑁𝑁_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡!

!!"#$%&'

!!!

  [1] 

where 𝐵𝐵𝐵𝐵 is balanced accuracy, 𝑁𝑁_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the number of predicted chemicals by a specific 

model,  𝑁𝑁_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of chemicals in the prediction set, 𝑁𝑁!"#$%&' represents the 

number of 5 filters applied to the evaluation set chemicals and i the steps 2, 3, 4, 5 and 6. 

Score_2. Evaluation includes the BA of the model on the ToxCast data, and the BA on the 

unambiguous chemicals: , i.e., the subgroup of chemicals from the literature that remained after 

excluding chemicals with only 1 literature source, very weak chemicals, and chemicals outside 

of the AD, if provided. It favors models that focused on predicting more accurately but, 

potentially, with a narrower AD. 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒_2 = 1
2 𝐵𝐵𝐵𝐵!"#$%&' + 𝐵𝐵𝐵𝐵!"" !"#$%&'   [2] 

The quantitative predictions were evaluated as categorical models (using the BA) of the 

five classes after converting the numerical predictions to potency classes as defined earlier. 

Scores of the continuous models were calculated using equation (2).  

Consensus modeling 

The consensus predictions were generated for binders, agonists, and antagonists 

separately. For each chemical we derived the average Score 2 value for all categorical models 

that predicted the chemical as active, and the average Score 2 value for all categorical models 

that predicted the chemical as inactive, and used the higher of the two averages to classify the 

chemical as active or inactive. Models that did not provide a prediction for the chemical in 

question were not included when deriving the average scores. We used Score 2 to derive the 

consensus classifications because its value for individual models is not penalized for the number 

of chemicals not predicted by the model. Also, the concordance among models on both active 

and inactive classes was calculated for each chemical as the fraction of models with positive and 

negative prediction, respectively. 

Considering only the models that provided predictions, the sum of the concordance 

among models for actives and inactives is equal to 1. Because most models were associated with 

comparable scores, the average score used to classify chemicals was mostly in agreement with 

model concordance; i.e., the average score for actives is high when the concordance among the 

models with active predictions is high and vice versa. The few exceptions were noticed when 

model concordance was around 0.5, which means only one or two models were driving the 

classification. 
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For continuous predictions, the weight (𝑤𝑤) for each chemical 𝑖𝑖 was calculated from the 

scores as follows: 

𝑤𝑤! = 𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜! 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠!

!

!!!

  [3] 

where 𝑛𝑛 is the total number of models that provided predictions for the chemical 𝑖𝑖, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠! is 

the score of the jth model predicting chemical 𝑖𝑖. 

Next, the consensus potency level 𝐶𝐶!  of each chemical was determined using the predicted 

potency classes 𝑃𝑃! of the 𝑛𝑛 available models and their corresponding weights 𝑤𝑤 as follows: 

𝐶𝐶! = 𝑤𝑤! ∙ 𝑃𝑃!

!

!!!

  [4] 

Results and discussion 

Models and evaluation 

A total of 48 models were received from the 17 participant groups. Each group provided 

at least one categorical model for binding. Only 8 groups built models for agonists, and 6 groups 

built models for antagonists. The limited number of models for agonists and antagonists was the 

result of the low number of actives, which caused the training set to be highly unbalanced. The 

total number of models in each class (Table 1, Table S3 and Table S5) was: 

(1) binding models: 21 categorical and 3 continuous, 

(2) agonist models: 11 categorical and 3 continuous, and 

(3) antagonist models: 8 categorical and 2 continuous. 
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The participating groups provided predictions for uneven fractions of the 32k set. AD 

information on model predictions was provided by only six groups. All predictions for the 

individual models are provided on the EPA ToxCast website (See Models.zip) (US EPA-NCCT 

2016). 

The same evaluation procedure was applied to all models following the previously 

described steps. Note that some models were built using training sets other than what was 

provided in CERAPP and that these alternative training sets were not all publicly available. 

Hence, none of the training set chemicals were excluded from the evaluation sets (Table 1). Each 

model was evaluated on the overlap between the predicted chemicals and the two previously 

mentioned data sets: (1) ToxCast data and (2) the evaluation set collected from the literature. The 

evaluation results for categorical models are summarized in Table S3. The detailed statistics, 

including sensitivity and specificity, are provided in Table S4. 

Most compounds were predicted as inactives and the models seemed to be more in 

agreement in predicting inactives than active compounds. Only 757 chemicals (2.33%) are 

predicted as actives by more than 75% of binding models. The agreement among the binding 

models for the 32k set of the prediction set is illustrated in Figure S1.  

Most categorical models (binding, agonist, and antagonist) are associated with high 

balanced accuracies on the ToxCast data (> 0.8), with no clear difference between models that 

used it as a training set and those that did not (See Table S3). However, for the evaluation set 

from the literature, the BA is clearly lower for all models (<0.7). Nonetheless, the BA increased 

after removing chemicals with only one source from the literature data. This result could mean 

that this first filter (i.e., removing chemicals with limited information in the literature for being 

either positive or negative) reduced the uncertainty in the experimental data from the literature. 
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This is in agreement with related studies showing that the results of QSAR models may change 

depending on the robustness of the experimental values (Steinmetz et al. 2014). The second filter 

(i.e., removing very weak actives) also increased the BA, which suggests that the literature data 

may contain a number of false positives. Alternatively, the in vitro assays used by 

ToxCast/Tox21 only test chemicals up to 100 µM, so very weak chemicals may not be picked up 

by these assays and some of the literature reports may have tested chemicals up to much higher 

concentrations. 

Finally, removing predictions outside the AD did not show improvement of the BA of the 

categorical models (See Table S3). This is in agreement with literature sources showing that 

predictions outside the AD are not always less accurate than those within its limits (Sahigara et 

al. 2012). The performance of most models showed a clear improvement of 0.05 to 0.1 on the 

BA after applying all the filters on the literature data to keep only the unambiguous chemicals. 

We believe that this effectively reduced the uncertainty of the literature sources. This step also 

highlighted differences between ToxCast and the literature data and confirmed the existence of 

uncertainty in the literature data. Uncertainty and data discordance was also reported in literature 

review of in vivo uterotrophic bioassays (Kleinstreuer et al. 2015). 

The calculated scores for categorical models (Table S3) take into consideration the whole 

prediction set (Score_1) and the accuracy of the model on its most reliable predictions (Score_2). 

The models that provided predictions for the whole or most of the 32k set of chemicals, and had 

wide ADs, showed high Score_1 values (Umeå 0.82, OCHEM 0.83). Whereas models with 

predictions for smaller fractions of the prediction set and narrow AD showed better Score_2 

values (UNIMIB_2 0.85, UNIBA 0.80). NIH_NCI_GUSAR (0.87 and 0.84) and 
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FDA_NCTR_DBB (0.88 and 0.84) showed the highest values for both Score_1 and Score 2. Part 

of the differences among model scores could result from the uncertainty in the literature data. 

The BAs of all antagonist models was low compared with binding and agonist models 

(Table S3). This may be due to the highly unbalanced training set with a low number of active 

antagonist chemicals. Additionally, antagonism activity (in either ToxCast or the literature) can 

be confounded with cytotoxicity because antagonist transactivation assays are loss-of-signal 

assays. 

The predictions of all continuous models were first converted to five classes using the list 

of reference chemicals as described in the evaluation set section (materials and methods). The 

predictions were then evaluated on the ToxCast data and the literature data to calculate the 

average of BA of the different evaluation steps as the score of each model (See Table S5). All 

models showed high BA on ToxCast data and relatively good BA on the evaluation set. 

Consensus model 

The consensus predictions were first evaluated on the ToxCast data and then on the 

evaluation set from the literature. The total number of predicted active binders was 2661 out of 

the 32k set of chemicals (8.2%) based on the method described in the Materials and methods 

section Consensus modeling. 

Confusion matrices (Table 4) and prediction statistics (Table 5) revealed a clear accuracy 

difference between the categorical consensus for binding on the ToxCast data and on the 

evaluation set. This difference could result from the fact that the ToxCast data, based on a model 

with inputs from 18 different assays, were used by most of the models as a training set, which we 

presume reduces the uncertainty. This is in contrast to the literature data, where the number of 
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sources per chemical varied from one to a few hundreds. When only the subset of the evaluation 

set with more than six literature sources per chemical was considered, a large increase in the 

sensitivity was noticed (0.23 to 0.85). 

To better understand the effect of the number of sources on the classification accuracy, 

ROC plots were made using the fraction of the binding models in each class as a threshold for 

the classification predictions and increasing the number of literature sources of the evaluation 

set. The ROC plot shows an improvement of the classification accuracy of the consensus model 

as the number of sources increases (Figure 1). Note that the same level of consistency (i.e., 80%) 

was required to merge the sources regardless of the number of sources (See rule 1 in Section 

Evaluation set for categorical models). This could lead to the conclusion that the low 

classification accuracy on the full literature data is not because of a lack of accuracy of the 

consensus predictions, but rather to noise and experimental uncertainty in the literature data. We 

assume that the high number of false negatives in the confusion matrix of Table 4 is caused by 

false positives in the full literature data for chemicals tested only a small number of times. Thus, 

by considering a higher number of sources (i:e:, 6), the number of false positives is reduced from 

the evaluation set and so the number of predicted false negatives decreased. This is in agreement 

with what was observed in the literature (Steinmetz et al. 2014). 
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Corrections to the consensus model 

The first step of consensus modeling was conducted in an independent way for the 

categorical and continuous models on binding, agonist, and antagonist predictions. This led to a 

number of inconsistencies because some chemicals were predicted as active in categorical 

predictions but inactive in quantitative and vice versa. In addition, some chemicals were 

predicted as active agonists or antagonists but non-binders. To make all predictions more 

consistent, a number of corrections were applied on the first consensus predictions. Because the 

goal of this project was to help in a regulatory prioritization procedure, the modifications aimed 

to reduce the number of false negatives but without adding an excess of false positives. The rules 

that were followed to obtain the final consensus predictions are as follows: 

(1) If a chemical i is active in the categorical consensus, then it is considered active also in the 

quantitative consensus. 

(2) If a chemical i is active in the quantitative consensus and predicted as active by at least three 

categorical models, then it is considered active also in the categorical consensus. 

(3) If a chemical i is predicted active by less than three categorical models, then it is considered 

inactive also in quantitative consensus. 

These 3 rules were applied on the agonist and antagonist consensus models first, then on the 

binding consensus. A fourth rule was added to establish consistency between agonist and 

antagonist consensus models and the binding consensus model. 

(4) If a chemical i is an active agonist or active antagonist, then it is considered as active in 

categorical binding consensus, and its potency level in the quantitative binding consensus is 

made equal to its potency level as agonist/antagonist. 



Environ Health Perspect DOI: 10.1289/ehp.1510267 
Advance Publication: Not Copyedited 
 

25 
 

An analysis of variance in concordance in each potency level of the active chemicals in 

the continuous models (very weak, weak, moderate, and strong) is presented as a box-plot in 

Figure 2. Based on this figure we noticed a correlation between the concordance of the 

categorical models and the potency level of active chemicals. This implies that models are more 

in agreement for strong actives and that the weaker a chemical is the more difficult it is to 

accurately predict. Therefore, the very weak chemicals are the main source of discordance 

among the different in silico models and also are the most uncertain experimentally. This 

relationship between positive concordance (agreement between models on predictions for active 

chemicals) and potency level for active chemicals can be used to set a quantitative prediction to 

the newly reclassified active chemicals using the previously mentioned rule 1 of the corrections 

applied to the consensus predictions. The following thresholds were considered for each potency 

level. 

(1) Strong: Concordance among models >= 0.9 

(2) Moderate: 0.75 <= Concordance among models < 0.9 

(3) Weak: 0.6 <= Concordance among models < 0.75 

(4) Very weak: Concordance among models < 0.6 

.  

After applying the four correction rules on consensus predictions, the total number of 

chemicals predicted as actives increased from 2661 to 4001, which corresponds to 12.3% of the 

total number of the prediction set (32,464). Table 6 shows the number of reclassified chemicals 

based on each one of the 4 correction rules applied to the consensus predictions. After this step, 

the predicted activity of several chemicals has changed. The structural information of chemicals 
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and the predictions of the consensus model for the whole 32k set are provided on the EPA 

ToxCast website (See PredictionSet.zip) (US EPA-NCCT 2016). 

The confusion matrices and statistics for the binding categorical consensus model after 

modifications evaluated on ToxCast data and the literature data are presented in Table 7 and 

Table 8, respectively. The effect of the number of sources on the classification accuracy of the 

consensus model is illustrated by a bar plot in Figure S2. This figure shows an improvement of 

sensitivity with the increase in the number of literature sources in the evaluation set (from ~0.3 

with at least 1 source to >0.6 with 6 sources and more). This is translated into an increase in BA, 

whereas specificity is almost constant (~0.9) because of the high number of inactives compared 

to active compounds. 

The results of this project and the ToxCast data used as the training set, are published 

online in the EDSP21 dashboard, together with other structural and experimental assay 

information (See “Consensus CERAPP QSAR ER Model Predictions” under “Chemical 

Summary” tab on http://actor.epa.gov/edsp21) (US EPA-NCCT 2014b). A comparison of the 

single classification models to the consensus predictions for the whole 32k set of chemicals is 

provided in Table S6. The calculations are done using the categorical consensus predictions as 

the “observed response”. 

For regulatory or prioritization purposes, one could use a looser definition of active (.e. 

allow more disagreement among models) in order to further reduce the chance of false negatives. 

Figure 3 shows the number of chemicals that can be predicted as potential actives by the 

categorical consensus for binding using various positive concordance (agreement on actives 

between the included models) thresholds. When this threshold is set to 0.2, a total of additional 



Environ Health Perspect DOI: 10.1289/ehp.1510267 
Advance Publication: Not Copyedited 
 

27 
 

6,742 more chemicals can be added to the potential positives (this refers to the available binding 

models). This figure also shows the BA variations at different number of literature sources in the 

literature. Balanced accuracy increases as the concordance threshold increases from 0 to 0.2 

because sensitivity increases (false negatives decrease) as the number of chemicals classified as 

active increases. For chemicals with the highest data quality (seven or more sources), the BA 

curve reaches a plateau at concordance thresholds of 0.4–0.5, and the number of chemicals 

classified as active is consistent with the number of active chemicals predicted from our 

consensus model (n = 4001.) However, higher concordance thresholds result in declining BA due 

to increasing numbers of false positive predictions (i.e., decreasing specificity). 

Conclusion 

The collaborative efforts of CERAPP participants resulted in consensus predictions of the 

ability of chemicals to interact with ER. Up to 48 separately developed categorical and 

continuous models were received from 17 research groups from the United States and Europe. 

Separate models were built for agonist, antagonist, and binding activity. The models were 

applied to a large collection of 32,464 chemical structures that approximate the human exposure 

universe (chemicals with potential human exposure). A KNIME workflow was developed to 

carefully curate the large collection of chemical structures to ensure consistency in model 

development and evaluation. Most of the models were trained using activities derived from a 

dataset combining 18 in vitro assays from ToxCast probing various points of the ER pathway. 

Models, then, were evaluated using the ToxCast data plus a collection of ER in vitro data from 

the literature. Categorical predictions were after that combined into a consensus to classify the 
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chemicals into actives and inactives, while continuous predictions were combined to classify the 

actives into 4 different potency classes: very weak, weak, moderate, and strong. 

One major observation was that most models had comparable performances, independent 

of the methods used, with a slight improvement for models with narrow ADs. A second and, 

perhaps, more important observation is that the most concordant predictions come from 

comparing the consensus of many models with a consensus of many literature sources. For 

instance, when comparing the consensus of the categorical binding models with the evaluation 

set from the literature for chemicals with seven or more sources, we achieve a balanced accuracy 

of about 90% (Table 8). 

We propose several important conclusions from our results. First, there does not appear 

to be an optimal modeling approach (combination of descriptor set, feature selection, or machine 

learning algorithm) that will solve the QSAR/docking problem and achieve perfect prediction 

accuracies. Second, there are inherent limitations to the accuracy of the data being used to train 

QSAR and docking models. Our analysis of the literature data showed a disagreement in the 

reported activity of many chemicals. The sources of discrepancy include limits to the 

concentration ranges tested, true differential activity among tissue sources (e.g., the presence of 

selective ER modulators, SERMs), and a variety of experimental artifacts and errors. Figure 2 

shows that the most consistent predictions are achieved for the most potent compounds, whereas 

weaker compounds are called inactive by some laboratories because these compounds were not 

tested at a high enough concentration. So chemicals with very weak activity would be more 

likely to be incorrectly classified as inactive than more potent chemicals. Therefore, 100% 

accuracy cannot be achieved due to these limitations in the experimental data used for training 

and evaluation. Figures 1 and 3 help to illustrate this point by showing that higher consistency in 
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the experimental data is associated with an increase in the concordance among model 

predictions. But this comes at the cost of excluding parts of the experimental data. So, just as 

every model has limitations, every in vitro assay also has inherent variability in its results. 

The major purpose of this study was to identify potential ER actives out of the large 

universe of chemicals to which humans potentially are exposed using a consensus of in silico 

models to overcome the limitations of single models. Most of the chemicals in this collection 

were predicted to be negatives, with a high agreement among the individual models. The 

disagreement was the highest for chemicals with weak activity (Figure 2). This disagreement is 

driven by the difficulties in experimentally assessing the activity of these weak chemicals. In 

total, the consensus predicted 4001 chemicals as actives. The testing of these active chemicals 

will be prioritized from the most potent to the least according to the continuous model consensus 

predictions. There are 6,742 more chemicals that 20% to 50% of the models predicted to be 

positive, which could also be candidates for follow-up. Although this large number of chemicals 

(~10,000 in total) appears to be a daunting set to evaluate experimentally, this is equivalent in 

size to the current Tox21 library already being tested for activity in ER and many other targets. 

In summary, this project demonstrates the feasibility of screening a large and 

toxicologically relevant library of chemical structures in an extensive battery of QSAR and 

docking models to meet important goals in human and environmental health. ER provides a good 

initial case because of the ready availability of experimental data and preexisting models. 

However, through the ToxCast and Tox21 programs, and through other large scale data-

integration projects, equivalently large data sets will become available for multiple other targets 

of environmental importance. 
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Table 1. Methods adopted by the participant groups (alphabetic order) in the modeling procedure 

Model name 
Calibration 

method 
Descriptors 

software/type 
Training Set 

(No. chemicals) Predictions type 

DTU PLS/fragments Leadscope METI (595,481)/ 
ToxCast (1422) Categorical 

EPA_NCCT GA + PLSDA PADEL ToxCast (1529) Categorical 
FDA_NCTR_DBB 
(Ng et al. 2014) DF Mold2 ToxCast (1677) Categorical 

FDA_NCTR_DSB PLS 3D-SDAR  ToxCast (1019) Categorical 
ILS_EPA (Zang et al. 
2013) SVM + RF Qikprop ToxCast (1677) Categorical 

IRCCS_CART 
(Roncaglioni et al. 
2008) 

CART-VEGA 2D descriptors METI (806) Categorical 

IRCCS_Ruleset Ruleset SMARTS ToxCast (1529) Categorical 
JRC_Ispra (Poroikov 
et al. 2000) PASS MNA — Categorical 

Lockheed Martin kNN Fingerprints  ToxCast (1677) Categorical + 
Continuous 

NIH_NCATS Docking AutoDock score — Categorical 
NIH_NCI_GUSAR 
(Filimonov et al. 
2009) 

RBF-SCR MNA, QNA ToxCast (1677) Categorical 

NIH_NCI_PASS 
(Poroikov et al. 
2000) 

PASS MNA ToxCast (1677) Categorical 

OCHEM (OCHEM 
2015) Consensus 11 Descriptor types ToxCast (1660) Categorical + 

Continuous 
RIFM SVM Fingerprints ToxCast (1677) Categorical 

Umeå (Rybacka et al. 
2015) ASNN DRAGON 

METI + (Kuiper 
et al. 1997; Taha 

et al. 2010)  
Categorical 

UNC_MML SVM+RF DRAGON ToxCast (120) Categorical 
UNIBA (Trisciuzzi et 
al. 2015) Docking GLIDE score ToxCast (1677) Categorical 

UNIMIB kNN DRAGON + 
Fingerprints ToxCast (1677) Categorical 

UNISTRA (Horvath 
et al. 2014) SVM ISIDA ToxCast (1529) Categorical + 

Continuous 
Predictions type: A categorical model is one that provides an active/inactive call for each chemical, 

whereas a continuous model provides a prediction of the potency (in µM) for each active chemical. 

Calibration methods:  PLS (partial least-squares), PLS-DA (partial least-squares discriminant analysis), 

SVM (support vector machines), RF (random forest), DF (Decision forest), kNN (k nearest neighbors), 

ASNN (associative artificial neural networks), PASS (algorithm derived from Naïve Bayes classifier), 

RBF-SCR (self-consistent regression with radial basis function interpolation) 
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Table 2. Evaluation set for binary categorical models. Distribution of the number of active and 

inactive chemicals within the three different classes: binding, agonists and antagonists. 

Class\activity Active Inactive Total 
Binding 1982 5301 7283 
Agonist 350 5969 6319 
Antagonist 284 6255 6539 
Total 2017 7024 7522 

The classification into actives and inactives is based on a consensus between the literature data sources in 

agreement.  
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Table 3. Evaluation set for quantitative models. Distribution of the number of chemicals in the 

five potency levels within the three different classes (binding, agonists and antagonists), 

classifications based on average scores. 

Class\activity Inactive Very Weak Weak Moderate Strong Total 
Binding 5042 685 894 72 77 6770 
Agonist 5892 19 179 31 42 6163 
Antagonist 6221 76 188 10 10 6505 
Total 6892 702 916 81 93 7253 
The classification of the chemicals in the five potency levels is based on the concentration responses from 

the literature sources in agreement.
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Table 4. Confusion matrices of categorical consensus predictions for binding 

Observed\Predicted ToxCast Data 
Predicted  
actives 

ToxCast Data 
Predicted 
inactives 

Literature 
Evaluation Set 

(All: 7283) 
Predicted actives 

Literature 
Evaluation Set 

(All: 7283) 
Predicted 
inactives 

Observed actives 76 13 467 1515 
Observed inactives 25 1415 268 5033 
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Table 5. Statistics of categorical consensus predictions for binding on ToxCast and literature 

data 

Statistics\ used data ToxCast Data Literature Evaluation 
Set (All: 7283) 

Literature Evaluation Set 
(>6 Sources: 1257) 

Sensitivity 0.85 0.23 0.85 
Specificity 0.98 0.95 0.97 
Balanced accuracy 0.92 0.59 0.91 

The literature data with more than 6 sources represents the most consistent part of the evaluation set.



Environ Health Perspect DOI: 10.1289/ehp.1510267 
Advance Publication: Not Copyedited 
 

43 
 

Table 6. Number of chemicals reclassified after applying each one of the 4 prediction correction rules. 

Rule used for 
each class 

Rule 1 
Agonist 

Rule 1 
Antagonist 

Rule 1 
Binding 

Rule 2 
Agonist 

Rule 2 
Antagonist 

Rule 2 
Binding 

Rule 3 
Agonist 

Rule 3 
Antagonist 

Rule 3 
Binding 

Rule 4 
binding 

Number of 
chemicals 1288 2760 1587 217 14 344 145 161 38 966 

Rule 1: chemicals that changed from inactive to active in the quantitative consensus based on the categorical consensus. 

Rule 2: chemicals that changed from inactive to active in the categorical consensus based on the quantitative consensus. 

Rule 3: chemicals that changed from active to inactive in the quantitative consensus based on the predictions of the categorical consensus.  

Rule 4: chemicals that changed from inactive to active in the categorical binding consensus based on their agonist and antagonist activity in the 

categorical consensus.



Environ Health Perspect DOI: 10.1289/ehp.1510267 
Advance Publication: Not Copyedited 
 

44 
 

Table 7. Confusion matrices of the modified categorical consensus predictions for binding 

Observed\Predicted ToxCast Data 
Predicted actives 

ToxCast Data 
Predicted  
inactives 

Literature 
Evaluation Set 

(All: 7283) 
Predicted  
actives 

Literature 
Evaluation Set 

(All: 7283) 
Predicted  
inactives 

Observed  actives 83 6 597 1385 
Observed  inactives 40 1400 463 4838 
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Table 8. Statistics of the modified categorical consensus for binding predictions on ToxCast and 

literature data 

Statistics \ used data ToxCast Data Literature 
Evaluation Set 

(All: 7283) 

Literature Evaluation Set 
(>6 Sources: 1275) 

Sensitivity 0.93 0.30 0.87 
Specificity 0.97 0.91 0.94 
Balanced accuracy 0.95 0.61 0.91 
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Figure legends 

Figure 1. ROC curves of the categorical corrected consensus predictions for binding evaluated 

against different sets of the evaluation set with variable numbers of literature sources. The 

number of available chemicals in the evaluation set (between brackets) decreased with higher 

numbers of literature sources. The true and false positive rates are determined based on the 

number of actives in the different sets of the evaluation set. Boxes extend from the 25th to the 

75th percentile, horizontal bars represent the median, whiskers indicate the 10th and 90th 

percentiles, and outliers are represented as points. 

Figure 2. Box-plot of the positive class potency levels in the corrected quantitative consensus 

predictions for binding. The concordance between models is the fraction of the number of 

models that agrees on the prediction of a certain chemical. 

Figure 3. Variation of the balanced accuracy of the corrected categorical consensus predictions 

for binding with positive concordance (agreement between models on predictions for active 

chemicals) threshold at different numbers of literature sources. 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 


